Z = 4Mo *K* α radiation

 $\mu = 0.10 \text{ mm}^{-1}$

 $0.25 \times 0.22 \times 0.20$ mm

T = 296 K

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-{(*E*)-[(4-Methylphenyl)imino]methyl}-4-nitrophenol-2-{(*E*)-[(4-methylphenyl)iminio]methyl}-4-nitrophenolate (0.60/0.40)

M. Nawaz Tahir,^a* Hazoor Ahmad Shad^b and Riaz H. Tarig^c

^aDepartment of Physics, University of Sargodha, Sargodha, Pakistan, ^bDepartment of Chemistry, Govt. M. D. College, Toba Tek Singh, Punjab, Pakistan, and ^cInstitute of Chemical and Pharmaceutical Sciences, The University of Faisalabad, Faisalabad, Pakistan

Correspondence e-mail: dmntahir_uos@yahoo.com

Received 6 August 2011; accepted 8 August 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.049; wR factor = 0.133; data-to-parameter ratio = 12.4.

The crystal of the title compound, $0.6C_{14}H_{12}N_2O_3$. $0.4C_{14}H_{12}N_2O_3$, contains a mixture of its neutral (OH containing) and zwitterionic (NH containing) forms, in a 0.60 (4):0.40 (4) ratio. The former generates an *S*(6) loop *via* an intramolecular $O-H\cdots N$ hydrogen bond and the latter generates an *S*(6) loop *via* an $N-H\cdots O$ hydrogren bond. The aromatic rings are oriented at a dihedral angle of 42.52 (10)°. In the crystal, $C-H\cdots\pi$ interactions occur and aromatic $\pi-\pi$ stacking interactions [centroid–centroid separations = 3.7106 (12) and 3.9177 (13) Å] consolidate the packing.

Related literature

For related structures, see: Hijji *et al.* (2009); Kılıç *et al.* (2009). For graph-set notation, see: Bernstein *et al.* (1995).

Experimental

Crystal data 0.6C₁₄H₁₂N₂O₃·0.4C₁₄H₁₂N₂O₃

 $M_r = 256.26$

Monoclinic, PZ_1/c	
a = 14.0623 (6) Å	
b = 14.1723 (8) Å	
c = 6.2357 (3) Å	
$\beta = 95.400(2)^{\circ}$	
V = 1237.23 (11) Å ³	

Data collection

Bruker Kappa APEXII CCD	9733 measured reflections
diffractometer	2238 independent reflections
Absorption correction: multi-scan	1395 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2005)	$R_{\rm int} = 0.041$
$T_{\min} = 0.976, \ T_{\max} = 0.985$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.049$	H atoms treated by a mixture of
$wR(F^2) = 0.133$	independent and constrained
S = 1.03	refinement
2238 reflections	$\Delta \rho_{\rm max} = 0.20 \ {\rm e} \ {\rm \AA}^{-3}$
181 parameters	$\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, $^{\circ}$).

Cg1 and Cg2 are the centroids of the C1-C6 and C9-C14 rings, respectively.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$O1 - H1 \cdots N1$	0.80(6)	1.86 (6)	2.566(3)	147 (6)
$C5-H5\cdots Cg1^{i}$	0.97 (8) 0.93	2.84	2.500 (5) 3.515 (2)	140 (0)
$C11-H11\cdots Cg2^n$	0.93	2.82	3.490 (2)	130

Symmetry codes: (i) $x, -y + \frac{3}{2}, z + \frac{1}{2}$; (ii) $x, -y + \frac{3}{2}, z - \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT* (Bruker, 2009); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *PLATON* (Spek, 2009); software used to prepare material for publication: *WinGX* (Farrugia, 1999) and *PLATON* (Spek, 2009).

The authors acknowledge the provision of funds for the purchase of diffractometer and encouragement by Dr Muhammad Akram Chaudhary, former Vice Chancellor, University of Sargodha, Pakistan.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6352).

References

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.

- Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Hijji, Y. M., Barare, B., Butcher, R. J. & Jasinski, J. P. (2009). Acta Cryst. E65, 0291–0292.
- Kılıç, I., Ağar, E., Erşahin, F. & Işık, Ş. (2009). Acta Cryst. E65, 0737.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2011). E67, o2319 [doi:10.1107/S1600536811032028]

2-{(*E*)-[(4-Methylphenyl)imino]methyl}-4-nitrophenol-2-{(*E*)-[(4-methylphenyl)iminio]methyl}-4-nitrophenolate (0.60/0.40)

M. N. Tahir, H. A. Shad and R. H. Tariq

Comment

The crystal structures of 2-((4-methoxyphenyl)iminomethyl)-4-nitrophenol (Kılıç *et al.*, 2009) and 2-(((E)-(2-hydroxy-5-nitrophenyl) methylidene)ammonio)-4-nitrophenolate (Hijji *et al.*, 2009) have been published which are related to the title compound (I), (Fig. 1). The title compound consists of two isomers with 0.60:0.40 ratio.

In (I), the 4-methylanilinic group A (C1—C7/N1) and the 2-hydroxy-5-nitrobenzaldehyde group B (C8—C14/N2/O1/O2/O3) are almost planar with r.m.s. deviations of 0.0283 and 0.0222 Å, respectively. The dihedral angle between A/B is 41.86 (4)°. There exist intramolecular hydrogen bonds of O—H···N and N—H···O type completing S(6) (Bernstein *et al.*, 1995) ring motifs (Table 1, Fig. 2). In the crystal, there exist π - π interaction between the centroids of the benzene rings of 4-methyaniline with a separation of 3.9177 (13) Å and a slippage of 1.333 Å. Similarly, π - π interaction between the centroids of the benzene rings of 2-hydroxy-5-nitrobenzaldehyde also exist with a separation of 3.7106 (12) Å and a slippage of 1.452 Å. In consolidating the crystal structure, C—H··· π bonds (Table 1) also play role.

Experimental

Equimolar quantities of 2-hydroxy-5-nitrobenzaldehyde and and 4-methylaniline were refluxed in ethanol for 30 min resulting in a yellow solution. The solution was kept at room temperature which affoarded yellow prisms of (I) after three days.

Refinement

The coordinates of hydrogen atoms of O—H and N—H were refined. The occupancy factor of both H-atoms was refined and therefore, the two isomers are of 0.60:0.40 ratio. The H-atoms were positioned geometrically (C–H = 0.93 Å) and refined as riding with $U_{iso}(H) = xU_{eq}(C, N, O)$, where x = 1.2 for all H-atoms.

Figures

Fig. 1. View of the title compound with displacement ellipsoids drawn at the 50% probability level. The dotted line represents the miniority H-atom.

Fig. 2. Overlapped intramolecular hydrogen bonds forming two S(6) ring motif.

 $\label{eq:constraint} 2-\{(E)-[(4-Methylphenyl)imino]methyl\}-4-nitrophenol-2-\{(E)-[(4-methylphenyl)iminio]methyl\}-4-nitrophenolate (0.60/0.40)$

F(000) = 536

 $\theta=2.0{-}25.3^\circ$

 $\mu = 0.10 \text{ mm}^{-1}$ T = 296 K

Prism, yellow

 $0.25 \times 0.22 \times 0.20 \text{ mm}$

 $D_{\rm x} = 1.376 {\rm Mg m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 1395 reflections

Crystal data

0.6C₁₄H₁₂N₂O₃·0.4C₁₄H₁₂N₂O₃ $M_r = 256.26$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 14.0623 (6) Å b = 14.1723 (8) Å c = 6.2357 (3) Å $\beta = 95.400$ (2)° V = 1237.23 (11) Å³ Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer	2238 independent reflections
Radiation source: fine-focus sealed tube	1395 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.041$
Detector resolution: 8.10 pixels mm ⁻¹	$\theta_{\text{max}} = 25.3^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$
ω scans	$h = -16 \rightarrow 16$
Absorption correction: multi-scan (SADABS; Bruker, 2005)	$k = -17 \rightarrow 17$
$T_{\min} = 0.976, \ T_{\max} = 0.985$	$l = -7 \rightarrow 7$
9733 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.049$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.133$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0558P)^{2} + 0.2667P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{max} < 0.001$
2238 reflections	$\Delta \rho_{max} = 0.20 \text{ e } \text{\AA}^{-3}$
181 parameters	$\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$
0 restraints	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
Primary atom site location: structure-invariant direct methods	Extinction coefficient: 0.0052 (14)

Special details

Geometry. Bond distances, angles *etc.* have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Z	Uiso*/Ueq	Occ. (<1)
01	0.18732 (12)	0.66637 (13)	0.3141 (3)	0.0536 (6)	
O2	-0.21627 (11)	0.59616 (18)	0.6085 (3)	0.0928 (9)	
03	-0.13153 (11)	0.55621 (14)	0.8965 (3)	0.0676 (7)	
N1	0.28626 (12)	0.62025 (13)	0.6653 (3)	0.0406 (6)	
N2	-0.13922 (12)	0.58577 (15)	0.7115 (3)	0.0499 (7)	
C1	0.37651 (14)	0.62162 (15)	0.7884 (3)	0.0379 (7)	
C2	0.45601 (14)	0.59352 (16)	0.6902 (4)	0.0452 (8)	
C3	0.54536 (15)	0.59847 (17)	0.8003 (4)	0.0507 (9)	
C4	0.55810 (15)	0.63374 (16)	1.0085 (4)	0.0465 (8)	
C5	0.47796 (15)	0.66189 (16)	1.1032 (3)	0.0453 (8)	
C6	0.38783 (14)	0.65645 (16)	0.9965 (3)	0.0429 (8)	
C7	0.65595 (16)	0.6427 (2)	1.1264 (4)	0.0708 (10)	
C8	0.20829 (14)	0.60487 (15)	0.7508 (3)	0.0394 (7)	
C9	0.11702 (14)	0.61460 (15)	0.6278 (3)	0.0353 (7)	
C10	0.11017 (15)	0.64786 (15)	0.4120 (3)	0.0392 (7)	
C11	0.01983 (15)	0.66214 (15)	0.3029 (3)	0.0431 (8)	
C12	-0.06138 (15)	0.64214 (15)	0.3987 (3)	0.0431 (8)	
C13	-0.05334 (14)	0.60742 (15)	0.6096 (3)	0.0382 (7)	
C14	0.03375 (13)	0.59379 (15)	0.7226 (3)	0.0365 (7)	
H1	0.234 (4)	0.652 (3)	0.390 (10)	0.0643*	0.60 (4)
H2	0.44905	0.57122	0.54928	0.0542*	
Н3	0.59813	0.57782	0.73398	0.0608*	
Н5	0.48500	0.68523	1.24322	0.0544*	
Н6	0.33496	0.67605	1.06375	0.0515*	
H7A	0.65363	0.62414	1.27390	0.1061*	
H7B	0.67695	0.70705	1.12087	0.1061*	
H7C	0.69974	0.60270	1.05983	0.1061*	
H8	0.21077	0.58713	0.89483	0.0472*	
H11	0.01490	0.68561	0.16300	0.0517*	
H12	-0.12117	0.65149	0.32459	0.0517*	
H14	0.03733	0.57065	0.86269	0.0438*	
H1A	0.274 (5)	0.641 (4)	0.518 (13)	0.0487*	0.40 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.0503 (10)	0.0696 (13)	0.0423 (10)	-0.0045 (9)	0.0123 (8)	0.0082 (8)
02	0.0349 (10)	0.171 (2)	0.0711 (13)	0.0043 (12)	-0.0028 (9)	0.0236 (13)
O3	0.0485 (10)	0.1043 (16)	0.0511 (11)	-0.0035 (9)	0.0110 (8)	0.0189 (10)
N1	0.0362 (10)	0.0452 (12)	0.0407 (11)	0.0013 (8)	0.0053 (8)	0.0002 (9)
N2	0.0361 (10)	0.0681 (14)	0.0454 (12)	-0.0001 (10)	0.0039 (9)	0.0003 (10)
C1	0.0328 (11)	0.0393 (13)	0.0417 (13)	0.0008 (9)	0.0045 (9)	0.0027 (10)
C2	0.0424 (12)	0.0507 (15)	0.0435 (13)	0.0027 (11)	0.0094 (10)	-0.0063 (11)
C3	0.0354 (12)	0.0554 (16)	0.0627 (16)	0.0073 (11)	0.0127 (11)	-0.0019 (12)
C4	0.0390 (12)	0.0473 (15)	0.0524 (14)	0.0023 (10)	0.0008 (10)	0.0044 (12)
C5	0.0457 (13)	0.0513 (15)	0.0391 (12)	0.0015 (11)	0.0044 (10)	-0.0016 (11)
C6	0.0387 (12)	0.0489 (14)	0.0424 (13)	0.0016 (10)	0.0100 (10)	-0.0003 (11)
C7	0.0458 (14)	0.086 (2)	0.0776 (19)	0.0041 (14)	-0.0102 (13)	-0.0008 (16)
C8	0.0398 (12)	0.0403 (14)	0.0383 (12)	0.0014 (10)	0.0053 (10)	0.0032 (10)
C9	0.0350 (11)	0.0356 (12)	0.0351 (12)	-0.0005 (9)	0.0030 (9)	0.0003 (9)
C10	0.0432 (12)	0.0378 (13)	0.0372 (12)	-0.0030 (10)	0.0077 (10)	-0.0014 (10)
C11	0.0537 (14)	0.0440 (14)	0.0309 (11)	-0.0015 (11)	0.0005 (10)	0.0046 (10)
C12	0.0427 (12)	0.0441 (14)	0.0406 (13)	0.0014 (10)	-0.0067 (10)	-0.0023 (10)
C13	0.0351 (11)	0.0422 (14)	0.0378 (12)	-0.0019 (9)	0.0055 (9)	-0.0025 (10)
C14	0.0392 (11)	0.0394 (13)	0.0308 (11)	-0.0002 (10)	0.0029 (9)	0.0007 (9)

Geometric parameters (Å, °)

O1—C10	1.320 (3)	C9—C10	1.421 (3)
O2—N2	1.215 (2)	C10-C11	1.398 (3)
O3—N2	1.223 (3)	C11—C12	1.367 (3)
O1—H1	0.80 (6)	C12—C13	1.399 (3)
N1—C1	1.420 (3)	C13—C14	1.368 (3)
N1—C8	1.282 (3)	С2—Н2	0.9300
N2—C13	1.449 (3)	С3—Н3	0.9300
N1—H1A	0.96 (8)	С5—Н5	0.9300
C1—C2	1.383 (3)	С6—Н6	0.9300
C1—C6	1.384 (3)	C7—H7A	0.9600
C2—C3	1.376 (3)	С7—Н7В	0.9600
C3—C4	1.387 (3)	С7—Н7С	0.9600
C4—C5	1.380 (3)	С8—Н8	0.9300
C4—C7	1.503 (3)	C11—H11	0.9300
C5—C6	1.377 (3)	C12—H12	0.9300
C8—C9	1.439 (3)	C14—H14	0.9300
C9—C14	1.392 (3)		
С10—О1—Н1	110 (4)	N2-C13-C12	119.32 (18)
C1—N1—C8	122.22 (18)	N2-C13-C14	119.13 (17)
O2—N2—O3	122.38 (18)	C12—C13—C14	121.55 (18)
O3—N2—C13	118.87 (17)	C9—C14—C13	119.96 (18)
O2—N2—C13	118.74 (18)	C1—C2—H2	120.00

C8—N1—H1A	111 (4)	C3—C2—H2	120.00
C1—N1—H1A	126 (4)	С2—С3—Н3	119.00
N1—C1—C2	118.38 (18)	С4—С3—Н3	119.00
N1—C1—C6	122.00 (18)	С4—С5—Н5	119.00
C2—C1—C6	119.45 (19)	С6—С5—Н5	119.00
C1—C2—C3	120.2 (2)	С1—С6—Н6	120.00
C2—C3—C4	121.1 (2)	С5—С6—Н6	120.00
C3—C4—C5	117.8 (2)	С4—С7—Н7А	109.00
C3—C4—C7	121.3 (2)	С4—С7—Н7В	109.00
C5—C4—C7	120.9 (2)	С4—С7—Н7С	109.00
C4—C5—C6	121.92 (19)	H7A—C7—H7B	109.00
C1—C6—C5	119.51 (18)	H7A—C7—H7C	109.00
N1—C8—C9	121.13 (18)	H7B—C7—H7C	109.00
C8—C9—C14	119.82 (17)	N1—C8—H8	119.00
C8—C9—C10	120.96 (18)	С9—С8—Н8	119.00
C10—C9—C14	119.20 (18)	C10-C11-H11	119.00
O1-C10-C9	121.23 (19)	C12—C11—H11	119.00
O1-C10-C11	119.66 (18)	C11—C12—H12	120.00
C9—C10—C11	119.11 (18)	C13—C12—H12	120.00
C10-C11-C12	121.02 (18)	C9—C14—H14	120.00
C11—C12—C13	119.13 (19)	C13-C14-H14	120.00
C8—N1—C1—C2	149.4 (2)	C4—C5—C6—C1	0.2 (3)
C8—N1—C1—C6	-35.4 (3)	N1-C8-C9-C10	-4.4 (3)
C1—N1—C8—C9	172.72 (19)	N1-C8-C9-C14	177.4 (2)
O2—N2—C13—C12	1.9 (3)	C8—C9—C10—O1	3.4 (3)
O2—N2—C13—C14	-178.5 (2)	C8—C9—C10—C11	-175.9 (2)
O3—N2—C13—C12	-179.4 (2)	C14—C9—C10—O1	-178.4 (2)
O3—N2—C13—C14	0.3 (3)	C14—C9—C10—C11	2.3 (3)
N1—C1—C2—C3	176.6 (2)	C8—C9—C14—C13	176.8 (2)
C6—C1—C2—C3	1.3 (3)	C10-C9-C14-C13	-1.4 (3)
N1-C1-C6-C5	-175.7 (2)	O1-C10-C11-C12	178.9 (2)
C2—C1—C6—C5	-0.5 (3)	C9—C10—C11—C12	-1.8 (3)
C1—C2—C3—C4	-1.7 (4)	C10-C11-C12-C13	0.4 (3)
C2—C3—C4—C5	1.3 (3)	C11—C12—C13—N2	-179.76 (19)
C2—C3—C4—C7	-177.7 (2)	C11-C12-C13-C14	0.6 (3)
C3—C4—C5—C6	-0.6 (3)	N2-C13-C14-C9	-179.70 (19)
C7—C4—C5—C6	178.4 (2)	C12-C13-C14-C9	0.0 (3)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1-C6	and C9-C14 r	ings, respectively.		
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O1—H1…N1	0.80 (6)	1.86 (6)	2.566 (3)	147 (6)
N1—H1A···O1	0.97 (8)	1.71 (7)	2.566 (3)	146 (6)
C5—H5···Cg1 ⁱ	0.93	2.84	3.515 (2)	130
C11—H11···Cg2 ⁱⁱ	0.93	2.82	3.490 (2)	130
Symmetry codes: (i) x , $-y+3/2$, $z+1/2$; (ii) x , $-y+3/2$	2, $z - 1/2$.			

Fig. 2